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A b s t r a c t - T h e  time of the onset of double-diffusiw~ convection in time-dependent, nonlinear temperature fields 
is investigated theoretically. The initially quiescent horizontal fluid layer with a uniform solute gradient experiences 
ramp heating from below, but its stable solute concentration is to reduce thermal effects which inw)ke convective 
motion. The related stability analysis is conducted on the basis of the propagation theory, t inder the linear stability 
theory the thermal penetration depth is used as a length scaling factor and the linearized perturbation equations 
of similarity transform are solved numerically. The resulting correlations of the critical time to mark the onset of 
regular cells are derived as a function of lhe thermal Rayleigh and the solute Rayleigh numbers. The predicted 
stabi:ity criteria are apparently consistent with existing experimental results for aqueous solution of sodium chloride. 
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INTRODUCTION 

Buoyancy-driven convection in double-diffusive systems has 
been studied extensively in connection with wide engineering sit- 
uations such as crystal growth processing, solar ponds and natural 
gas storage tanks EChen and Johnson, 1984: Ostrach, 1983; Tur- 
ner, 1973~. Recently, the role of convection in growing semicon- 
ductor crystals has been an active resean;h topic, since convective 
motion is deleterious for manufacturing high-grade crystals. But 
the inherent complexity in practical systems makes it very' diffi- 
cult to predict the stability criteria by which the effect of natural 
convection is delermined in the process design. This comes from 
the fact that the solute concentration and temperature profiles 
are nonlinear and time-dependent. 

When an initially motionless, stable concentration-stratified fluid 

layer is placed between two horizontal plates with its botl()in botmd- 
ary heated suddenly, natural convection will set in at a certain 
time, depending on both the thermal Rayleigh number  and the 
solute Rayleigh :number [Nield, 1967~. Therefore, it becomes an 
important problem to predict the critical time to mark the onset 
of convective motion. For this purpose, several theoretical models, 
have been used in deep-pool systems of high Rayleigl-t numbers: 
the amplification theory' [Foster, 1965~, energy, method I-Wankal 
and Homsy, 1977~, stochastic model [Jhaveri and Hor:tsy, 1982] 
and propagation theory_ [Choi et al., 19863. Even though they 
are all good models, the present double-diffusive convection has 
been analysed only by the amplification theory. The amplification 
theory, has been quite popular, but it involves difficulties in de- 
ciding the initial conditions and also choosing the growth factor 
to determine the onset time. Comparing with other methods, the 
energy, method predicts the onset time of buoyancy-driven con- 
vection as lower bound. And the stochastic model involves some 

tTo whom all correspondences should be addressed. 
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Fig. 1. Schematic diagram of the system. 
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arbitrariness. But the propagation theory which we have devel- 

oped decides deterministically the criteria to mark the onset time 
by using the thermal penetration depth as a length scaling factor 
and transforming the linearized perturbation equations. Predicted 
values resulting from the principle of exchange of stabilities have 
been consistent with most of experimental data in systems of 
laminar forced convection EAhn and Choi, 19881, internal heat 
generation EChoi et al., 1992] and also fluid-saturated porous lay- 
ers EYoon and Choi, 1989~. Therefore, the stability analysis based 
on the propagation theorT will be extended to the present problem 
of the onset of double-diffusive convection caused by ramp heat- 
ing from below. 

STABILITY ANALYSIS 

I. Mathematical Formulation 
The problem considered here is a horizontal fluid layer con- 

fined between two rigid boundaries separated by a distance L, 
as shown in Fig  1. The fluid layer is initially quiescent at a con- 
stant temperature T, and stably stratified by a uniform solute-con- 
centration gradient. At the time t - 0  the lower surface of the 
fluid layer is heated suddenly with a constant temporal rate 0. 
Therefore the bottom temperature increases linearly with time. 
For high-q) systems natural convection will set in at a certain 
time due to buoyancy forces. Under  this ramp-heating condition 
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the density variation of fluid is assumed to follow the usual equa- 
tion of state [Nield, 1967]: 

p = p,,[ 1 - [ 3 ( T -  To) + 7 ( C  - C,,) ]  ( I )  

where p, T, C, ~3 .and y represent the fluid density, the tempera- 
ture, the solute concentration, the volumetric thermal expansion 
coefficient, and the volumetric solute expansion coefficient, re- 
spectively. The subscript 0 denotes the basic state. 

The important parameters to characterize the onset [)f motion 
in the present system are the thermal Rayleigh number Ra, the 
solute Rayleigh number Rs, the Prandtl number Pr and the Lewis 
number Le, defined by 

R a -  gI3OLr' R s -  gyL:~AC v ct - - - ,  , Pr -- ,  L e = - -  

where g, ct, v, AC and a~ denote the gravitational acceleration, 
the thermal diffusivity, the kinematic viscosity, the concentration 
difference and the solute diffusivity, respectively. Under the linear 
stability theory, the nondimensionalized conservation equations 
are constituted as follows [Kaviany, 1984a; Kaviany and Vogel, 
1986] : 

1 O V2)V2Wl = Vi201 --  1 e v1L~I/1 (2) 
Pr Oz 

00o* 001 +Ra  w ~ - - -  =V~01 (3) 
O~ Oz 

0'~0 1 0~I]l -}- R s  w 1 = 
O~ 0z e VZ'~'~ (4) 

O0,,* 020,, * (5)  
O~ O z2 

O~ , , _  1 o~F/ (6) 
O~ Le O z-~ 

where V 2 is the three-dimensional Laplacian, and V~ 2 is the hori- 
zontal one with respect to x and y. Here z, ~, w~, 0,*, 0t, *0, 
and W~ are the dimensionless vertical distance, time, perturbed 
vertical velocity, basic temperature, perturbed temperature, basic 
concentration, and perturbed concentration, respectively. Each var- 
iable has been nondimensionalized by using L, L2/a, a/L, *L2/a, 
va/gl3L:L AC and vc~.JgyL :~, respectively. The proper boundary con- 
ditions are 

wl=O0w~=0~=~u for z = 0  and z = l  (7) 

0.* = z at z = 0 (8a) 

0.* 0 at z = l  (8b) 

OV, = 0  for z = 0  and z = l  (9) 
0z 

Eq. (7) satisfies the conditions of no fluctuation of perturbed quan- 
tities at rigid boundaries. The boundary, conditions (8) and (9) 
come from Kaviany and Vogel's [-1986]. 

Through the method of the separation of variables, the Graetz- 
type solution for the basic temperature is easily obtained as 

0~ ,.El - 2  ', 2 (~n),~ sin(nnz)[ 1 - e x p ( -  wn ~)] (10) 

Since this exact solution involves mathematical difficulties in the 
present deep-pool system of small v wherein the similarity solu- 
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Fig. 2. Base  temperature profile. 
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tion exists. For a deep-pool system, the basic temperature 0o* 
is transformed with a similarity variable, ~ = z/x/-ff by using the 
relation of 

0!7 = tOo(q) (11) 

Then a new set of equations are generated from Eqs. (5), and 
(8): 

d2O0dq 2 +2_ql dd~_00= 0 (12) 

00=1 at q = 0  (13a) 

00=0 for q-*oo (13b) 

The solution of 00 is obtained numerically, as shown in Fig. 2. 
This similarity solution agrees well with the exact one for 1:<0.1. 

At the initial state for the stable concentration-stratified fuid 
layer, the dimensionless concentration field satisfying Eq. (6) will 
be linear as shown in Fig. 1. The effect of the linear distribution 
is expected to stabilize the fluid layer. Under the boundary condi- 
tion of Eq. (9), the exact solution for the dimensionless concentra- 
tion is obtained as follows, 

Vo= ~- + .=,~; (2n_ 1)2n ~ cos[-(2n- 1),z]exp . -  (2 1)2~ 2 (14) 

Therefore the base density field satisfying the equation of state 
can be defined as 

Rs 
p* - 0,,* + ~ R a  V,, (15) 

where p* denotes the nondimensionalized base density scaled 
by p0~L~[3/a. The resultant variation of the profile of the base 
density with respect to time is shown in Fig. 3 where maximum 
magnitude of density locates within the fluid layer. The density 
distribution for this system is quite similar to that for the internal- 
ly heat-generating one which has been analysed by the propaga- 
tion theory [Choi et al., 1992]. 
2. P ropaga t ion  Theory  

For a given Ra, Pr, Rs and Le the time to mark the onset 
of convective motion is to be found under the principle of ex- 
change of stabilities from Eqs. (2)-(4), subjected to the boundary 
condition (7). Even though the initially stratified density field may 
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Fig. 3. Base densit)' profiles with respect to time for Ra=  10" and Rs=  
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Fig. 4. Neutral stabiliff curves for P r : 7  and Le=100 .  

reduce the magnitude of the generated disturbances, the disturb- 
ances are to be generated continuously. Therefore the density 
distribution for molecular diffusion of heat and salt in water is 
time-dependent. This is a formidable task to obtain quantitative 
results for the onset time of the double-diffusive convection, and 
therefore, we will employ the propagation theory we have de- 
veloped. Since there is no lateral boundary in the present system, 
it is assumed that the horizontal variations of disturbances at the 

onset time are represented by the dimensionless wave numbers, 
a, and a,, as follows: 

(w], 01. hul)=[wl*(~, z), 01"(~, z), ~t*(t, z)]exp[i(ax4 a:~)j (16) 

where i is the imaginary number. As the buoyancy effects are 
confined in the thermal penetration depth, the length scale com- 
ponents are rescaled by the dimensionless thermal penetration 
depth 8 having the value of 0,=0.01. Fig. 2 shows that ;5=3.8~/~ 
for vK0.1 in the present system. By using the relation of 6oc~//~ 
[Howard, 1964] amplitude functions are transformed as 

[w~*(z, z), 0,*(r. z), ~/,*(z, z)]= [zw*(-q), 0*(q), o/*(q)] (17) 

Now, the new amplitude functions w*, 0* are ~F* dependent 
on q only. Then, for the uniform concentration gradient we can 
get the following set of stability equations in terms of the horizon- 
tal wave number a = ~ ay 2, from Eqs. (2)-(4): 

1 1 a*%/* =0  (D ~ _ a.~)'-,w. + :~pr(qD :~- a*2qD + 2a*2)w * - a.20. + 
Le 

(t8) 

with boundary conditions: 

w * : D w * : 0 * = : W * - 0  for rl=O and q-~oo (21) 

where a * : a v ' z  ~. Ra*:Ra,v/-~, Rs*=Rs~? and D=d/dq .  These 
equations involve time-dependent properties implicitly. It is as- 
sumed that a*, Ra* and Rs* are all eigenvalues and the principle 
of exchange of stabilities is kept. This is essence of the propaga- 
tion theory. For a given Pr, Le, a* and Rs* the minimum value 

of Ra* will be found numerically. 
3. S o l u t i o n  M e t h o d  

In order to integrate the stability equations, Eqs. (18)-(20), trial 
values of the eigenvalue Ra* and the boundary conditions D3w *, 
DO*, and D~t '* at q = 0 are assumed properly for a given Pr, Le, 
a* and Rs*. Here, the values of Pr and Le are fixed at 7 and 
100, respectively, in order to compare the present stability criteria 
with Kaviany and Vogel's [1986]. Since boundary conditions rep- 
resented by Eq. (21) are all homogenous, the value of Dw* at 
q : 0  can be assigned arbitrarily. This procedure is based on the 
outward shooting method in which the boundary value problem 
is transformed into the initial value problem. The trial values, 
with together the four known conditions at the heated boundary, 
give all the information to make numerical integration. The inte- 
gration based on the 4th-order Runge-Kutta method is performed 
from q = 0 to a fictitious distance to satisfy the infinite boundary 
conditions. By using the Newton-Raphson iterations the trial val- 
ues of Ra*, DZw *, DO* and D~F * are corrected until the stability 
equations satisfy the infinite boundary conditions within the maxi- 
mum relative tolerance of 10 8. Then, by increasing the distance 
step by step, the above integration is repeated. Finally, the value 
of Ra* is decided through extrapolation. 

R E S U L T S  AND DISCUSSION 

With changing values of a* and then Rs*, the neutral stability 
curves are obtained for Le = 100 which denotes the ratio of molec- 
ular diffusivity for heat to that for salt. And also, the Prandtl 
number is taken to be 7 for the present system involving double 
diffusion of heat and salt in water. The resulting neutral stability 
curves are shown in Fig. 4. According to the present theory it 
is considered that for a given Rs* the minimum value of Ra* 
on each curve of Ra* and a*, as shown in Fig. 5, characterizes 
the critical condition of convective motion. The present critical 
conditions to mark the onset of motion are represented by the 
following correlation within the bound of + 1% error: 

Ra~*=45.0+0.64Rs, .3/4 for ~,K0.1 (22) 

By using the relation of Ra~*=Rax/~)and Rs~*=Rs~c 2, we can 
obtain the critical time ~ for a given Ra and Rs. When the present 
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Fig. 5. Critical conditions of double-diffusive convection. 
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Fig. 8. Distribution of amplitude functions at R a * = 9 0  and R s * =  

250. 

correlation for P r = 7  and Le= 100 is compared with tee predic- 
tions of Kaviany and Vogel t1986], it is seen that the present 
predictions are almost one fourth of theirs based on the amplifica- 
tion theory. For detailed discussion the typical results are summa- 
rized in Fig. 6. In the figure the minimum bound of Ra*, i.e., 
z,..,, = 4.59Ra e.,r, corresponds to the case of the zero solute gradient 

of Rs 0. In this limiting case the Lewis number does not affect 
the critical time, and the present values of 1:, are about one fourth 
of Kaviany's results predicted by the amplification theory EI~a- 
viany, 1984b]. It is thought that the most dangerous instabilities 

initiated at the time v will grow to manifest themselves around 
the time 4v. For r,<0.1 the value of 4V represents  manifest con- 

vection very well in other transient deep-pool systems ELee et 
al., 1988; Yoon and Choi. 1989~. 

In the present deep-pool system the critical time becomes larg- 
er with increasing Rs, as shown in the figure. This means that 
the layer with large Rs requires the larger buoyancy force to 
induce convectiw~ motion because of more stable stratification. 
It is interesting that the effect of the stabilizing solute' gradient 
begins to be noticeable at v, =4z,.,,, considering the growth period 
of disturbances. This interpretation seems more reasonable than 
that of Kaviany and Vogel's by which the appreciable effect is 

seen at approximately Rs=0.1Ra EKaviany and Vogel, 1986]. In 
Fig. 7 the present predictions of z, are compared with both exper- 
imental data and theoretical predictions of Kaviany and Vogel. 
The solid line means coincidence between the experimental and 
theoretical results. Their experimental data for P r = 7  and Le= 

100 range over Rs =  10~-101~ For ~(<0.1 it is found that the pres- 
ent results are very reasonable in comparison with their experi- 
mental data. For ours are a little lower than experimental data, 
while Kaviany and Vogel's are somewhat higher than data points. 
It is interesting that our predictions for large Rs approach the 
experimental values more closely than those for Rs=  0. All these 
studies justify to a certain degree that the onset of motion is 
characterized by regular cells. These results will be strictly valid 
only very close to the critical state, since the subsequent motion 
is often oscillatory in time ENield, 1967]. Furthermore, for the 
base state of linear profiles the stability conditions can be repre- 

sented by 

Ra = R s  +1708 for large ~,. (23) 
Le 

which will be the. stability limit. Incorporating this limiting condi- 
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Fig. 9. Temporal growth rates for Ra=  10" and Rs=  10". 

tion in Fig. 6, it may be loosely stated that these predictions cover 

the whole domain of present interest. 
The typical amplitude distributions at R s * - 2 5 0  and R a * - 9 0  

are featured in Fig. 8, as quantities normalized in terms of maxi- 
mum magnitude, tt is known that disturbances are raainly con- 
fined within the thermal penetration depth, i.e., q=3.8.  In other 
cases the similar trends have been observed. Therefore, it seems 
certain that the thermal penetration depth is the proper length 
scale in many of deep-pool systems. From Eq. (17) the temporal 
growth rates of disturbance amplitudes at 1: 1:, are obtained as 

follows: 

1 Ow,* I = ~ i ( 1 -  q .  Dw*) (24) 
w,* 01: : ,, z,~, 2w 

�9 ) _ q 1 00,* I 1 ( 2 0 '  DO* (25) 
0]* 01: : ~, 1:, , 

qq* 0v : ,, 1:, 2q** D~F* (26) 

For P r - 7 ,  Le= 100, Ra= 10 * and Rs=  10 * the growth rates are 
obtained along the vertical distance, as shown in Fig. 9. This indi- 
cates that disturbances do not grow in the form of an exponential 
function with respect to 1:. Considering the distributions shown 
in the figure, it is known that the amplitudes of both temperature 
and concentration disturbances near the bottom boundary are 
damped. It seeras that this decrement of thermal and chemical 
potentials brings an increase in kinetic energy of disturbances 
in the outer region. 

CONCLUSION 
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N O M E N C L A T U R E  

a :dimensionless horizontal wave number, v/a,~+a,=' 
a* :modified wave number, aver 
C :concentration [(weight percent)] 

D :differential operator with respect to 
g :gravitational acceleration Em s ~'] 
L :depth  of layer [m]  
Le :Lewis number, cure 
Pr : Prandtl number, v/c~ 
Ra : thermal  Rayleigh number, g[k, LS/a% 

Ra* :modified thermal Rayleigh number, Ra\/'1::' 
Rs :solute Rayleigh number, gTL:~AC/cLv 
Rs* :modified solute Rayleigh number, Rs1: e 

T : temperature [K] 

t : t ime Is]  
w :z-component of dimensionless velocity 
z :dimensionless vertical coordinate 

( ; r e e k  L e t t e r s  
a : thermal  diffusivity [m2s 1~ 
c~, :solute diffusivity EmZs ~2 
[3 : volumetric thermal expansion coefficient EK 1], _ (0p/0T)c 

/p 

y : volumetric solute expansion coefficient [(weight percent) ~], 

(OolOC)/o 
8 :dimensionless thermal penetration depth, c%/'z 
r I :modified vertical distance, z /v '~  
0 : dimensionless temperature 
v : kinematic viscosity Em-'s i] 
p :density ~Kg m :~] 
r : dimensionless time 
�9 : temporal rate of heating [Ks ~] 
q~ : dimensionless concentration 
v ~ : dimensionless Laplacian 
VL ~ :dimensionless horizontal Laplacian with respect to x and 

Y 

S u b s c r i p t s  
c : critical state 
i : initial state 
0 : basic state 
1 : perturbed state 

The onset of double-diffusive convection due to ramp heating 
in an initially stably stratified fluid layer with a uniform solute 
gradient has been analyzed deterministically by using the propa- 
gation theory, and the amplification of disturbances has been dis- 
cussed qualitatively. In comparison with extant experimental data 

the present stability criteria look very reasonable. It .appears ap- 
parent that in the range of 1:,24z,,, the growth period of disturb- 
ances to manifest convection becomes much shorter  in compari- 
son with that of the no-solute gradient. 
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