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Abstract—The time of the onset of double-diffusive convection in time-dependent, nonlinear temperature fields
is investigated theoretically. The initially quiescent horizontal fluid layer with a uniform solute gradient experiences
ramp heating from below, but its stable solute concentration is to reduce thermal effects which invoke convective
motion. The related stability analysis is conducted on the basis of the propagation theory. Under the linear stability
theory the thermal penetration depth is uscd as a length scaling factor and the linearized perturbation equations
of similarity transform are solved numerically. The resulting correlations of the critical time to mark the onset of
regular cells are derived as a function of the thermal Ravleigh and the solute Rayleigh numbers. The predicted
stabi.ity criteria are apparently consistent with existing experimental results for aqueous solution of sodium chloride.
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INTRODUCTION

Buoyancy-driven convection in double-diffusive systems has
been studied extensively in connection with wide engineering sit-
uations such as crystal growth processing, solar ponds and natural
gas storage tanks [Chen and Johnson, 1984; Ostrach, 1983; Tur-
ner, 1973]. Recently, the role of convection in growing semicon-
ductor crystals has been an active research topic, since convective
motion is deleterious for manufacturing high-grade crystals. But
the inherent complexity in practical systems makes it very diffi-
cult to predict the stability criteria by which the effect of natural
convection i1s determined in the process design. This comes from
the fact that the solute concentration and temperature profiles
are nonlinear and time-dependent.

When an initially motionless, stable concentration-stratified fluid
layer is placed between two horizontal plates with its bottom bound-
ary heated suddenly, natural convection will set in at a certain
time, depending on both the thermal Rayleigh number and the
solute Rayleigh number [Nield, 1967_. Therefore, it becomes an
important problem to predict the critical time to mark the onset
of convective motion. For this purpose, several theoretical models
have been used in deep-pool systems of high Rayleigh numbers:
the amplification theory [Foster, 1965], energy method [ Wankat
and Homsy, 1977], stochastic model [Jhaveri and Hormsy, 1982].
and propagation theory [Choi et al, 1986]. Even though they
are all good models, the present double-diffusive convection has
been analysed only by the amplification theory. The amplification
theory has been quite popular, but it involves difficulties in de-

ciding the initial conditions and also choosing the growth factor

to determine the onset time. Comparing with other mathods, the
energy method predicts the onset time of buoyancy-driven con-
vection as lower bound. And the stochastic model involves some

tTo whom all correspondences should be addressed.

15

Rigid

. ——
w

al N

Ti+ 9t

Rigid

Fig. 1. Schematic diagram of the system.

arbitrariness. But the propagation theory which we have devel-
oped decides deterministically the criteria to mark the onset time
by using the thermal penetration depth as a length scaling factor
and transforming the linearized perturbation equations. Predicted
values resulting from the principle of exchange of stabilities have
been consistent with most of experimental data in systems of
laminar forced convection [Ahn and Choi, 1988], internal heat
generation [ Choi et al,, 1992] and also fluid-saturated porous lay-
ers [ Yoon and Choi, 1989]. Therefore, the stability analysis based
on the propagation theory will be extended to the present problem
of the onset of double-diffusive convection caused by ramp heat-
ing from below.

STABILITY ANALYSIS

1. Mathematical Formulation

The problem considered here is a horizontal fluid layer con-
fined between two rigid boundaries separated by a distance L,
as shown in Fig. 1. The fluid layer is initially quiescent at a con-
stant temperature T, and stably stratified by a uniform solute-con-
centration gradient. At the time t=0 the lower surface of the
fluid layer is heated suddenly with a constant temporal rate o.
Therefore the bottom temperature increases linearly with time.
For high-¢ systems natural convection will set in at a certain
time due to buoyancy forces. Under this ramp-heating condition
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the density variation of fluid is assumed to follow the usual equa-
tion of state [Nield, 1967]:

p=pa1—P(T—Ty)+y(C—Cu] 1)

where p, T, C, B and y represent the fluid density, the tempera-
ture, the solute concentration, the volumetric thermal expansion
coefficient, and the volumetric solute expansion coefficient, re-
spectively. The subscript 0 denotes the basic state.

The important parameters to characterize the onset of motion
in the present system are the thermal Rayleigh number Ra, the
solute Rayleigh number Rs, the Prandtl number Pr and the Lewis
number Le, defined by

Ra= SPOL° po_ @AC v oo

a oy

alv ' a.v

where g, a, v, AC and o, denote the gravitational acceleration,
the thermal diffusivity, the kinematic viscosity, the concentration
difference and the solute diffusivity, respectively. Under the linear
stability theory, the nondimensionalized conservation equations
are constituted as follows [Kaviany, 1984a; Kaviany and Vogel,
1986]:
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where V* is the three-dimensional Laplacian, and V¢ is the hori-
zontal one with respect to x and y. Here z, t, w;, 6,% 6, ¥,
and ¥, are the dimensionless vertical distance, time, perturbed
vertical velocity, basic temperature, perturbed temperature, basic
concentration, and perturbed concentration, respectively. Each var-
iable has been nondimensionalized by using L, L¥/a, a/L, ¢L%a,
va/gBL?, AC and va,/gyL?, respectively. The proper boundary con-
ditions are

wlzaav?:()]:‘h:O for z=0 and z=1 )
6=t at z=0 (8a)
91,":0 at z=1 (Sb)
o _y for z=0 and z=1 ©)
oz

Eq. (7) satisfies the conditions of no fluctuation of perturbed quan-
tities at rigid boundaries. The boundary conditions (8) and (9)
come from Kaviany and Vogel's [1986].
Through the method of the separation of variables, the Graetz-
type solution for the basic temperature is easily obtained as
Loo—2 s
0 =(1—2tt+ T -——sin(nnz)[1—exp(—n*n’t)] (10)
w1 (om)
Since this exact solution involves mathematical difficulties in the
present deep-pool system of small t wherein the similarity solu-
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Fig. 2. Base temperature profile.

tion exists. For a deep-pool system, the basic temperature 6,*
is transformed with a similarity variable, n=z/\/'? by using the
relation of

04)*:'560(1']) (11)

Then a new set of equations are generated from Egs. (5), and

8):

d0, 1 de. , _

dn? + 2‘1 dn 8,=0 12)
8,=1 at n=0 (13a)
8,=0 for n—w (13b)

The solution of 8, is obtained numerically, as shown in Fig. 2.
This similarity solution agrees well with the exact one for t<0.1.

At the initial state for the stable concentration-stratified fluid
layer, the dimensionless concentration field satisfying Eq. (6) will
be linear as shown in Fig. 1. The effect of the linear distribution
is expected to stabilize the fluid layer. Under the boundary condi-
tion of Eq. (9), the exact solution for the dimensionless concentra-
tion is obtained as follows,

x — 122

V= % +x (férn—_%;ﬁg cos[(2n— 1)nz]exp[—@fel)—"—‘»] (14)
Therefore the base density field satisfying the equation of state
can be defined as

D*: -0+ LEIS{a ¥, (15)
where p* denotes the nondimensionalized base density scaled
by po¢L?B/a. The resultant variation of the profile of the base
density with respect to time is shown in Fig. 3 where maximum
magnitude of density locates within the fluid layer. The density
distribution for this system is quite similar to that for the internal-
ly heat-generating one which has been analysed by the propaga-
tion theory [Choi et al, 1992].
2. Propagation Theory

For a given Ra, Pr, Rs and Le the time to mark the onset
of convective motion is to be found under the principle of ex-
change of stabilities from Egs. (2)-(4), subjected to the boundary
condition (7). Even though the initially stratified density field may
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Fig. 3. Base density profiles with respect to time for Ra= 10" and Rs=
108,

reduce the magnitude of the generated disturbances, the disturb-
ances are to be generated continuously. Therefore the density
distribution for molecular diffusion of heat and salt in water is
time-dependent. This is a formidable task to obtain quantitative
results for the onset time of the double-diffusive convection, and
therefore, we will employ the propagation theory we have de-
veloped. Since there is no lateral boundary in the present system,
it ts assumed that the horizontal variations of disturbances at the
onset time are represented by the dimensionless wave numbers,
a, and a,, as follows:

(wy, 8, ¥D=L[w*x, 2), 0,*x, 2), ¥,*x, 2)]expli(a;+a)] (16)

where i is the imaginary number. As the buoyancy effects are
confined in the thermal penetration depth, the length scale com-
ponents are rescaled by the dimensionless thermal penetration
depth 5 having the value of 8,=0.01. Fig. 2 shows that §=3.8\/t
for t<0.1 in the present system. By using the relation of Boc\/?
[Howard, 1964] amplitude functions are transformed as

[w*k 2. 8%, 2, ¥\*(, DI=lw*0), 8* (), ¥* )] (A7)

Now, the new amplitude functions w*, 8* are ¥* dependent
on 1 only. Then, for the uniform concentration gradient we can
get the following set of stability equations in terms of the horizon-
tal wave number a=y/a’+a/’ from Egs. (2)-(4):

1 . ; 1,
2 kN2 W 3 a%20D) + 23*)w* — 2a*¥20* + *2,
(D*—a**Yw +2Pr(nD a*nD+2a*)w* —a*0 Le &V 0

(18)
(D2+ %nD ~a%)g* =Ra*w*Dé, (19)
(., Le ,)
D=+ nD—a*-)‘Y*: —LeRs*w* (20)
with boundary conditions:
w*=Dw*=8*=¥*=0 for n=90 and now (21)

where a*=ay/t, Ra*=Ray/t>, Rs*=Rst? and D=d/dn. These
equations involve time-dependent properties implicitly. It is as-
sumed that a* Ra* and Rs* are all eigenvalues and the principle
of exchange of stabilities is kept. This is essence of the propaga-
tion theory. For a given Pr, Le, a* and Rs* the minimum value
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Fig. 4. Neutral stability curves for Pr=7 and Le=100.

of Ra* will be found numerically.
3. Solution Method

In order to integrate the stability equations, Egs. (18)-(20), trial
values of the eigenvalue Ra* and the boundary conditions D3w*,
Do*, and D¥* at n=0 are assumed properly for a given Pr, Le,
a* and Rs* Here, the values of Pr and Le are fixed at 7 and
100, respectively, in order to compare the present stability criteria
with Kaviany and Vogel's [1986]. Since boundary conditions rep-
resented by Eq. (21) are all homogenous, the value of Dw* at
n=0 can be assigned arbitrarily. This procedure is based on the
outward shooting method in which the boundary value problem
1s transformed into the initial value problem. The trial values,
with together the four known conditions at the heated boundary,
give all the information to make numerical integration. The inte-
gration based on the 4th-order Runge-Kutta method is performed
from n=0 to a fictitious distance to satisfy the infinite boundary
conditions. By using the Newton-Raphson iterations the trial val-
ues of Ra*, D*w*, DO* and DW¥* are corrected until the stability
equations satisfy the infinite boundary conditions within the maxi-
mum relative tolerance of 1078, Then, by increasing the distance
step by step, the above integration is repeated. Finally, the value
of Ra* is decided through extrapolation.

RESULTS AND DISCUSSION

With changing values of a* and then Rs*, the neutral stability
curves are obtained for Le =100 which denotes the ratio of molec-
ular diffusivity for heat to that for salt. And also, the Prandtl
number is taken to be 7 for the present system involving double
diffusion of heat and salt in water. The resulting neutral stability
curves are shown in Fig. 4. According to the present theory it
is considered that for a given Rs* the minimum value of Ra*
on each curve of Ra* and a* as shown in Fig. 5, characterizes
the critical condition of convective motion. The present critical
conditions to mark the onset of motion are represented by the
following correlation within the bound of * 1% error:

Ra*=45.0+0.64Rs*¥* for t.<0.1 22)
By using the relation of Ra*=Ray/t° and Rs*=Rst’ we can

obtain the critical time t, for a given Ra and Rs. When the present
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Fig. 5. Critical conditions of double-diffusive convection.
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Fig. 6. Critical time with respect to Ra for Pr=7 and Le=100.

correlation for Pr=7 and Le=100 is compared with the predic-
tions of Kaviany and Vogel [1986], it is seen that the present
predictions are almost one fourth of theirs based on the amplifica-
tion theory. For detailed discussion the typical results are summa-
rized in Fig. 6. In the figure the minimum bound of Ra* ie.,
t.,=4.59Ra ** corresponds to the case of the zero solute gradient
of Rs=0. In this limiting case the Lewis number does not affect
the critical time, and the present values of t. are about one fourth
of Kaviany's results predicted by the amplification theory [Ka-
viany, 1984b]. It is thought that the most dangerous instabilities
initiated at the time t, will grow to manifest themselves around
the time 4x. For t.<0.1 the value of 4t, represents manifest con-
vection very well in other transient deep-pool systems [Lee et
al,, 1988; Yoon and Choi, 1989].

In the present deep-pool system the critical time becomes larg-
er with increasing Rs, as shown in the figure. This means that
the layer with large Rs requires the larger buoyancy force to
induce convective motion because of more stable stratification.
It is interesting that the effect of the stabilizing solute gradient
begins to be noticeable at t.=4r,,, considering the growth period
of disturbances. This interpretation seems more reasonable than
that of Kaviany and Vogel's by which the appreciable effect is
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Fig. 8. Distribution of amplitude functions at Ra*=90 and Rs*=
250.

seen at approximately Rs=0.1Ra [Kaviany and Vogel, 1986]. In
Fig. 7 the present predictions of t, are compared with both exper-
imental data and theoretical predictions of Kaviany and Vogel.
The solid line means coincidence between the experimental and
theoretical results. Their experimental data for Pr=7 and Le=
100 range over Rs=10*-10". For t.<0.1 it is found that the pres-
ent results are very reasonable in comparison with their experi-
mental data. For ours are a little lower than experimental data,
while Kaviany and Vogel’'s are somewhat higher than data points.
It is interesting that our predictions for large Rs approach the
experimental values more closely than those for Rs=0. All these
studies justify to a certain degree that the onset of motion is
characterized by regular cells. These results will be strictly valid
only very close to the critical state, since the subsequent motion
is often oscillatory in time [Nield, 1967]. Furthermore, for the
base state of linear profiles the stability conditions can be repre-
sented by

_Rs

Ra—g +1708 for large T, (23}

which will be the stability limit. Incorporating this limiting condi-
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Fig. 9. Temporal growth rates for Ra=10* and Rs=10%

tion in Fig. 6, it may be loosely stated that these predictions cover
the whole domain of present interest.

The typical amplitude distributions at Rs*=250 and Ra*=90
are featured in Fig. 8, as quantities normalized in terms of maxi-
mum magnitude. It is known that disturbances are mainly con-
fined within the thermal penetration depth, i.e, n=3.8. In other
cases the similar trends have been observed. Therefore, it seems
certain that the thermal penetration depth is the proper length
scale in many of deep-pool systems. From Eq. (17) the temporal
growth rates of disturbance amplitudes at t=rt, are obtained as
follows:

1 It L/ '
il IS R .
0,* /
oo 51 =~ H3 0]
1 a¥* ’
o

For Pr=7, Le=100, Ra=10* and Rs=10" the growth rates are
obtained along the vertical distance, as shown in Fig. 9. This indi-
cates that disturbances do not grow in the form of an exponential
function with respect to t. Considering the distributions shown
in the figure, it is known that the amplitudes of both temperature
and concentration disturbances near the bottom boundary are
damped. It seerns that this decrement of thermal and chemical
potentials brings an increase in kinetic energy of disturbances
in the outer region.

CONCLUSION

The onset of double-diffusive convection due to ramp heating
in an initially stably stratified fluid layer with a uniform solute
gradient has been analyzed deterministically by using the propa-
gation theory, and the amplification of disturbances has been dis-
cussed qualitatively. In comparison with extant experimental data
the present stability criteria look very reasonable. It appears ap-
parent that in the range of t.24x., the growth period of disturb-
ances to manifest convection becomes much shorter in compari-
son with that of the no-solute gradient.
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NOMENCLATURE
a : dimensionless horizontal wave number, \/a’+a*
a*  :modified wave number, a\/?
C : concentration [(weight percent)]
D : differential operator with respect to n
g : gravitational acceleration [m s ?]

L :depth of layer [m]

Le :Lewis number, o/a,

Pr  :Prandtl number, v/a

Ra :thermal Rayleigh number, gBoL%/a’y

Ra*. : modified thermal Rayleigh number, Ra\/’?
Rs :solute Rayleigh number, gyL’AC/a,v

Rs* :modified solute Rayleigh number, Rst*

T  :temperature {K]

t time [s]

w  :z-component of dimensionless velocity
z : dimensionless vertical coordinate

Greek Letters

a  :thermal diffusivity [m’s ']

a, :solute diffusivity [m?®s ']

B :volumetric thermal expansion coefficient [K '], —(gp/gT)c

p

Y : volumetric solute expansion coefficient [ (weight percent) '],

(9p/0C)r/p

: dimensionless thermal penetration depth, oc\/?

: modified vertical distance, z/\/T

: dimensionless temperature

: kinematic viscosity [m’s '}

:density _Kg m *]

: dimensionless time

: temporal rate of heating [Ks !]

: dimensionless concentration

; dimensionless Laplacian

| : dimensionless horizontal Laplacian with respect to x and
y

D =S O

<

o

4aqeo o

Subscripts

C : critical state

i :initial state

0 : basic state

1 : perturbed state
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